Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

25 April 2024
 
  » arxiv » cond-mat/0606340

 Article overview



Structural and dielectric properties of amorphous ZrO2 and HfO2
Davide Ceresoli ; David Vanderbilt ;
Date 13 Jun 2006
Subject Materials Science
AbstractZirconia (ZrO2) and hafnia (HfO2) are leading candidates for replacing SiO2 as the gate insulator in CMOS technology. Amorphous versions of these materials (a-ZrO2 and a-HfO2)) can be grown as metastable phases on top of a silicon buffer; while they tend to recrystallize during subsequent annealing steps, they would otherwise be of considerable interest because of the promise they hold for improved uniformity and electrical passivity. In this work, we report our theoretical studies of a-ZrO2 and a-HfO2 by first-principles density-functional methods. We construct realistic amorphous models using the ``activation-relaxation’’ technique (ART) of Barkema and Mousseau. The structural, vibrational, and dielectric properties of the resulting models are analyzed in detail. The overall average dielectric constant is computed and found to be comparable to that of the monoclinic phase.
Source arXiv, cond-mat/0606340
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica