Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

25 April 2024
 
  » arxiv » cond-mat/0606560

 Article overview



Phase-slip avalanches in the superflow of $^4$He through arrays of nanopores
David Pekker ; Roman Barankov ; Paul M. Goldbart ;
Date 21 Jun 2006
Subject Superconductivity
AbstractRecent experiments by Sato et al. [1] have explored the dynamics of $^4$He superflow through an array of nanopores. These experiments have found that, as the temperature is lowered, phase-slippage in the pores changes its character, from synchronous to asynchronous. Inspired by these experiments, we construct a model to address the characteristics of phase-slippage in superflow through nanopore arrays. We focus on the low-temperature regime, in which the current-phase relation for a single pore is linear, and thermal fluctuations may be neglected. Our model incorporates two basic ingredients: (1) each pore has its own random value of critical velocity (due, e.g., to atomic-scale imperfections), and (2) an effective inter-pore coupling, mediated through the bulk superfluid. The inter-pore coupling tends to cause neighbours of a pore that has already phase-slipped also to phase-slip; this process may cascade, creating an avalanche of synchronously slipping phases. As the temperature is lowered, the distribution of critical velocities is expected to effectively broaden, owing to the reduction in the superfluid healing length, leading to a loss of synchronicity in phase-slippage. Furthermore, we find that competition between the strength of the disorder in the critical velocities and the strength of the inter-pore interaction leads to a phase transition between non-avalanching and avalanching regimes of phase-slippage.
[1] Sato, Y., Hoskinson, E. Packard, R. E. cond-mat/0605660.
Source arXiv, cond-mat/0606560
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica