Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

25 April 2024
 
  » arxiv » cond-mat/0606670

 Article overview



Surface states, Friedel oscillations, and spin accumulation in p-doped semiconductors
Tudor D. Stanescu ; Victor Galitski ;
Date 27 Jun 2006
Subject Materials Science; Disordered Systems and Neural Networks
AbstractWe consider a hole-doped semiconductor with a sharp boundary and study the boundary spin accumulation in response to a charge current. First, we solve exactly a single-particle quantum mechanics problem described by the isotropic Luttinger model in half-space and construct an orthonormal basis for the corresponding Hamiltonian. It is shown that the complete basis includes two types of eigenstates. The first class of states contains conventional incident and reflected waves, while the other class includes localized surface states. Second, we consider a many-body system in the presence of a charge current flowing parallel to the boundary. It is shown that the localized states contribute to spin accumulation near the surface. We also show that the spin density exhibits current-induced Friedel oscillations with three different periods determined by the Fermi momenta of the light and heavy holes. We find an exact asymptotic expression for the Friedel oscillations far from the boundary. We also calculate numerically the spin density profile and compute the total spin accumulation, which is defined as the integral of the spin density in the direction perpendicular to the boundary. The total spin accumulation is shown to fit very well the simple formula S ~(1 - m_L/m_H)^2, where m_L and m_H are the light- and heavy-hole masses. The effects of disorder are discussed. We estimate the spin relaxation time in the Luttinger model and argue that spin physics cannot be described within the diffusion approximation.
Source arXiv, cond-mat/0606670
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica