| | |
| | |
Stat |
Members: 3665 Articles: 2'599'751 Articles rated: 2609
20 January 2025 |
|
| | | |
|
Article overview
| |
|
Acoustic attenuation in glasses and its relation with the boson peak | W. Schirmacher
; G. Ruocco
; T. Scopigno
; | Date: |
5 Jan 2007 | Subject: | Materials Science | Abstract: | A theory for the vibrational dynamics in disordered solids [W. Schirmacher, Europhys. Lett. {f 73}, 892 (2006)], based on the random spatial variation of the shear modulus, has been applied to determine the wavevector ($k$) dependence of the Brillouin peak position ($Omega_k)$ and width ($Gamma_k$), as well as the density of vibrational states ($g(omega)$), in disordered systems. As a result, we give a firm theoretical ground to the ubiquitous $k^2$ dependence of $Gamma_k$ observed in glasses. Moreover, we derive a quantitative relation between the excess of the density of states (the boson peak) and $Gamma_k$, two quantities that were not considered related before. The successful comparison of this relation with the outcome of experiments and numerical simulations gives further support to the theory. | Source: | arXiv, cond-mat/0701112 | Other source: | [GID 931454] pmid17358618 | Services: | Forum | Review | PDF | Favorites |
|
|
No review found.
Did you like this article?
Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.
|
| |
|
|
|