Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3665
Articles: 2'599'751
Articles rated: 2609

19 January 2025
 
  » arxiv » cond-mat/0701216

 Article overview



How to calculate the fractal dimension of a complex network: the box covering algorithm
Chaoming Song ; Lazaros K. Gallos ; Shlomo Havlin ; Hernan A. Makse ;
Date 10 Jan 2007
Subject Disordered Systems and Neural Networks; Statistical Mechanics
AbstractCovering a network with the minimum possible number of boxes can reveal interesting features for the network structure, especially in terms of self-similar or fractal characteristics. Considerable attention has been recently devoted to this problem, with the finding that many real networks are self-similar fractals. Here we present, compare and study in detail a number of algorithms that we have used in previous papers towards this goal. We show that this problem can be mapped to the well-known graph coloring problem and then we simply can apply well-established algorithms. This seems to be the most efficient method, but we also present two other algorithms based on burning which provide a number of other benefits. We argue that the presented algorithms provide a solution close to optimal and that another algorithm that can significantly improve this result in an efficient way does not exist. We offer to anyone that finds such a method to cover his/her expenses for a 1-week trip to our lab in New York (details in this http URL).
Source arXiv, cond-mat/0701216
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica