| | |
| | |
Stat |
Members: 3665 Articles: 2'599'751 Articles rated: 2609
23 January 2025 |
|
| | | |
|
Article overview
| |
|
Collapsing transition of spherical tethered surfaces with many holes | Hiroshi Koibuchi
; | Date: |
11 Jan 2007 | Subject: | Statistical Mechanics; Soft Condensed Matter | Abstract: | We investigate a tethered (i.e. fixed connectivity) surface model on spherical surfaces with many holes by using the canonical Monte Carlo simulations. Our result in this paper reveals that the model has only a collapsing transition at finite bending rigidity, where no surface fluctuation transition can be seen. The first-order collapsing transition separates the smooth phase from the collapsed phase. Both smooth and collapsed phases are characterized by Hausdorff dimension Hsimeq 2, consequently, the surface becomes smooth in both phases. The difference between these two phases can be seen only in the size of surface. This is consistent with the fact that we can see no surface fluctuation transition at the collapsing transition point. These two types of transitions are well known to occur at the same transition point in the conventional surface models defined on the fixed connectivity surfaces without holes. | Source: | arXiv, cond-mat/0701233 | Other source: | [GID 147962] pmid17358132 | Services: | Forum | Review | PDF | Favorites |
|
|
No review found.
Did you like this article?
Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.
|
| |
|
|
|