| | |
| | |
Stat |
Members: 3665 Articles: 2'599'751 Articles rated: 2609
25 January 2025 |
|
| | | |
|
Article overview
| |
|
Structure and energetics of solvated ferrous and ferric ions: Car-Parrinello molecular dynamics in the DFT+U formalism | P. H.-L. Sit
; Matteo Cococcioni
; Nicola Marzari
; | Date: |
12 Jan 2007 | Subject: | Materials Science; Soft Condensed Matter | Abstract: | We implemented a rotationally-invariant Hubbard U extension to density-functional theory in the Car-Parrinello molecular dynamics framework, with the goal of bringing the accuracy of the DFT+U approach to finite-temperature simulations, especially for liquids or solids containing transition-metal ions. First, we studied the effects on the Hubbard U on the static equilibrium structure of the hexa-aqua ferrous and ferric ions, and the inner-sphere reorganization energy for the electron-transfer reaction between aqueous ferrous and ferric ions. It is found that the reorganization energy is increased, mostly as a result of the Fe-O distance elongation in the hexa-aqua ferrous ion. Second, we performed a first-principles molecular dynamics study of the solvation structure of the two aqueous ferrous and ferric ions. The Hubbard term is found to change the Fe-O radial distribution function for the ferrous ion, while having a negligible effect on the aqueous ferric ion. Moreover, the frequencies of vibrations between Fe and oxygen atoms in the first-solvation shell are shown to be unaffected by the Hubbard corrections for both ferrous and ferric ions. | Source: | arXiv, cond-mat/0701262 | Services: | Forum | Review | PDF | Favorites |
|
|
No review found.
Did you like this article?
Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.
|
| |
|
|
|