| | |
| | |
Stat |
Members: 3665 Articles: 2'599'751 Articles rated: 2609
23 January 2025 |
|
| | | |
|
Article overview
| |
|
Boundary hopping and the mobility edge in the Anderson model in three dimensions | Viktor Z. Cerovski
; | Date: |
14 Jan 2007 | Subject: | Mesoscopic Systems and Quantum Hall Effect; Strongly Correlated
Electrons | Abstract: | It is shown, using high-precision numerical simulations, that the mobility edge of the 3d Anderson model depends on the boundary hopping term t in the infinite size limit. The critical exponent is independent of it. The renormalized localization length at the critical point is also found to depend on t but not on the distribution of on-site energies for box and Lorentzian distributions. Implications of results for the description of the transition in terms of a local order-parameter are discussed. | Source: | arXiv, cond-mat/0701306 | Services: | Forum | Review | PDF | Favorites |
|
|
No review found.
Did you like this article?
Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.
|
| |
|
|
|