Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3665
Articles: 2'599'751
Articles rated: 2609

25 January 2025
 
  » arxiv » cond-mat/0701334

 Article overview



Photon heat transport in low-dimensional nanostructures
Teemu Ojanen ; Tero T. Heikkila ;
Date 15 Jan 2007
Subject Mesoscopic Systems and Quantum Hall Effect; Statistical Mechanics
AbstractAt low temperatures when the phonon modes are effectively frozen, photon transport is the dominating mechanism of thermal relaxation in metallic systems. Starting from a microscopic many-body Hamiltonian, we develop a nonequilibrium Green’s function method to study energy transport by photons in nanostructures. A formally exact expression for the energy current between a metallic island and a one-dimensional electromagnetic field is obtained. From this expression we derive the quantized thermal conductance as well as show how the results can be generalized to nonequilibrium situations. Generally, the frequency-dependent current noise of the island electrons determines the energy transfer rate.
Source arXiv, cond-mat/0701334
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica