| | |
| | |
Stat |
Members: 3665 Articles: 2'599'751 Articles rated: 2609
23 January 2025 |
|
| | | |
|
Article overview
| |
|
Optical and spectral properties of quantum domain-walls in the generalized Wigner lattice | S. Fratini
; G. Rastelli
; | Date: |
17 Jan 2007 | Subject: | Strongly Correlated Electrons | Abstract: | We study the spectral properties of a system of electrons interacting through long-range Coulomb potential on a one-dimensional chain. When the interactions dominate over the electronic bandwidth, the charges arrange in an ordered configuration that minimizes the electrostatic energy, forming Hubbard’s generalized Wigner lattice. In such strong coupling limit, the low energy excitations are quantum domain-walls that behave as fractionalized charges, and can be bound in excitonic pairs. Neglecting higher order excitations, the system properties are well described by an effective Hamiltonian in the subspace with one pair of domain-walls, which can be solved exactly. The optical conducitivity $sigma(omega)$ and the spectral function $A(k,omega)$ can be calculated analytically, and reveal unique features of the unscreened Coulomb interactions that can be directly observed in experiments. | Source: | arXiv, cond-mat/0701413 | Services: | Forum | Review | PDF | Favorites |
|
|
No review found.
Did you like this article?
Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.
|
| |
|
|
|