| | |
| | |
Stat |
Members: 3665 Articles: 2'599'751 Articles rated: 2609
25 January 2025 |
|
| | | |
|
Article overview
| |
|
Topological aspects of graphene: Dirac fermions and the bulk-edge correspondence in magnetic fields | Y. Hatsugai
; T. Fukui
; H. Aoki
; | Date: |
18 Jan 2007 | Subject: | Mesoscopic Systems and Quantum Hall Effect | Abstract: | We discuss topological aspects of electronic properties of graphene, including edge effects, with the tight-binding model on a honeycomb lattice and its extensions to show the following: (i) Appearance of the pairn of massless Dirac dispersions, which is the origin of anomalous properties including a peculiar quantum Hall effect (QHE), is not accidental to honeycomb, but is rather generic for a class of two-dimensional lattices that interpolate between square and $pi$-flux lattices. Persistence of the peculiar QHE is interpreted as a topological stability. (ii) While we have the massless Dirac dispersion only around E=0, the anomalous QHE associated with the Dirac cone unexpectedly persists for a wide range of the chemical potential. The range is bounded by van Hove singularities, at which we predict a transition to the ordinary fermion behavior acompanied by huge jumps in the QHE with a sign change. (iii) For edges we establish a coincidence between the quantum Hall effect in the bulk and the quantum Hall effect for the edge states, which is a manifestation of the topological bulk-edge correspondence. We have also explicitly shown that the E=0 edge states in honeycomb in zero magnetic field persist in magnetic field. | Source: | arXiv, cond-mat/0701431 | Services: | Forum | Review | PDF | Favorites |
|
|
No review found.
Did you like this article?
Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.
|
| |
|
|
|