| | |
| | |
Stat |
Members: 3665 Articles: 2'599'751 Articles rated: 2609
20 January 2025 |
|
| | | |
|
Article overview
| |
|
Enhancing capacity of coherent optical information storage and transfer in a Bose-Einstein condensate | Ozgur E. Mustecaplioglu
; Devrim Tarhan
; | Date: |
18 Jan 2007 | Subject: | Other | Abstract: | Coherent optical information storage capacity of an atomic Bose-Einstein condensate is examined. Theory of slow light propagation in atomic clouds is generalized to short pulse regime by taking into account group velocity dispersion. It is shown that the number of stored pulses in the condensate can be optimized for a particular coupling laser power, temperature and interatomic interaction strength. Analytical results are derived for semi-ideal model of the condensate using effective uniform density zone approximation. Detailed numerical simulations are also performed. It is found that axial density profile of the condensate protects the pulse against the group velocity dispersion. Furthermore, taking into account finite radial size of the condensate, multi-mode light propagation in atomic Bose-Einstein condensate is investigated. The number of modes that can be supported by a condensate is found. Single mode condition is determined as a function of experimentally accessible parameters including trap size, temperature, condensate number density and scattering length. Quantum coherent atom-light interaction schemes are proposed for enhancing multi-mode light propagation effects. | Source: | arXiv, cond-mat/0701446 | Services: | Forum | Review | PDF | Favorites |
|
|
No review found.
Did you like this article?
Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.
|
| |
|
|
|