| | |
| | |
Stat |
Members: 3665 Articles: 2'599'751 Articles rated: 2609
19 January 2025 |
|
| | | |
|
Article overview
| |
|
Entropy and Temperature of a Static Granular Assembly | Silke Henkes
; Corey S. O’Hern
; Bulbul Chakraborty
; | Date: |
19 Jan 2007 | Subject: | Statistical Mechanics; Soft Condensed Matter | Abstract: | Granular matter is comprised of a large number of particles whose collective behavior determines macroscopic properties such as flow and mechanical strength. A comprehensive theory of the properties of granular matter, therefore, requires a statistical framework. In molecular matter, equilibrium statistical mechanics, which is founded on the principle of conservation of energy, provides this framework. Grains, however, are small but macroscopic objects whose interactions are dissipative since energy can be lost through excitations of the internal degrees of freedom. In this work, we construct a statistical framework for static, mechanically stable packings of grains, which parallels that of equilibrium statistical mechanics but with conservation of energy replaced by the conservation of a function related to the mechanical stress tensor. Our analysis demonstrates the existence of a state function that has all the attributes of entropy. In particular, maximizing this state function leads to a well-defined granular temperature for these systems. Predictions of the ensemble are verified against simulated packings of frictionless, deformable disks. Our demonstration that a statistical ensemble can be constructed through the identification of conserved quantities other than energy is a new approach that is expected to open up avenues for statistical descriptions of other non-equilibrium systems. | Source: | arXiv, cond-mat/0701489 | Services: | Forum | Review | PDF | Favorites |
|
|
No review found.
Did you like this article?
Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.
|
| |
|
|
|