| | |
| | |
Stat |
Members: 3665 Articles: 2'599'751 Articles rated: 2609
19 January 2025 |
|
| | | |
|
Article overview
| |
|
Evolution of a quantum spin system to its ground state: Role of entanglement and interaction symmetry | S. Yuan
; M. I. Katsnelson
; H. De Raedt
; | Date: |
20 Jan 2007 | Subject: | Other | Abstract: | We study the decoherence of two ferro- and antiferromagnetically coupled spins that interact with a frustrated spin-bath environment in its ground state. The conditions under which the two-spin system relaxes from the initial spin-up - spin-down state towards its ground state are determined. It is shown that the two-spin system relaxes to its ground state for narrow ranges of the model parameters only. It is demonstrated that the symmetry of the coupling between the two-spin system and the environment has an important effect on the relaxation process. In particular, we show that if this coupling conserves the magnetization, the two-spin system readily relaxes to its ground state whereas a non-conserving coupling prevents the two-spin system from coming close to its ground state. | Source: | arXiv, cond-mat/0701490 | Services: | Forum | Review | PDF | Favorites |
|
|
No review found.
Did you like this article?
Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.
|
| |
|
|
|