| | |
| | |
Stat |
Members: 3665 Articles: 2'599'751 Articles rated: 2609
19 January 2025 |
|
| | | |
|
Article overview
| |
|
A box-covering algorithm for fractal scaling in scale-free networks | J. S. Kim
; K.-I. Goh
; B. Kahng
; D. Kim
; | Date: |
21 Jan 2007 | Subject: | Statistical Mechanics; Disordered Systems and Neural Networks | Abstract: | A random sequential box-covering algorithm recently introduced to measure the fractal dimension in scale-free networks is investigated. The algorithm contains Monte Carlo sequential steps of choosing the position of the center of each box, and thereby, vertices in preassigned boxes can divide subsequent boxes into more than one pieces, but divided boxes are counted once. We find that such box-split allowance in the algorithm is a crucial ingredient necessary to obtain the fractal scaling for fractal networks; however, it is inessential for regular lattice and conventional fractal objects embedded in the Euclidean space. Next the algorithm is viewed from the cluster-growing perspective that boxes are allowed to overlap and thereby, vertices can belong to more than one box. Then, the number of distinct boxes a vertex belongs to is distributed in a heterogeneous manner for SF fractal networks, while it is of Poisson-type for the conventional fractal objects. | Source: | arXiv, cond-mat/0701504 | Services: | Forum | Review | PDF | Favorites |
|
|
No review found.
Did you like this article?
Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.
|
| |
|
|
|