| | |
| | |
Stat |
Members: 3665 Articles: 2'599'751 Articles rated: 2609
20 January 2025 |
|
| | | |
|
Article overview
| |
|
Dynamical control of electron spin coherence in a quantum dot | Wenxian Zhang
; V. V. Dobrovitski
; Lea F. Santos
; Lorenza Viola
; B. N. Harmon
; | Date: |
21 Jan 2007 | Subject: | Mesoscopic Systems and Quantum Hall Effect | Abstract: | We investigate the performance of dynamical decoupling methods at suppressing electron spin decoherence from a low-temperature nuclear spin reservoir in a quantum dot. The controlled dynamics is studied through exact numerical simulation, with emphasis on realistic pulse delays and long-time limit. Our results show that optimal performance for this system is attained by a periodic protocol exploiting concatenated design, with control rates substantially slower than expected from the upper spectral cutoff of the bath. For a known initial electron spin state, coherence can saturate at long times, signaling the creation of a stable ``spin-locked’’ decoherence-free subspace. Analytical insight on saturation is obtained for a simple echo protocol, in good agreement with numerical results. | Source: | arXiv, cond-mat/0701507 | Services: | Forum | Review | PDF | Favorites |
|
|
No review found.
Did you like this article?
Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.
|
| |
|
|
|