Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3665
Articles: 2'599'751
Articles rated: 2609

25 January 2025
 
  » arxiv » cond-mat/9207018

 Article overview



Vortex motion and the Hall effect in type II superconductors: a time dependent Ginzburg-Landau theory approach
Alan T. Dorsey ;
Date 15 Jul 1992
Subject cond-mat
AbstractVortex motion in type II superconductors is studied starting from a variant of the time dependent Ginzburg-Landau equations, in which the order parameter relaxation time is taken to be complex. Using a method due to Gor’kov and Kopnin, we derive an equation of motion for a single vortex ($Bll H_{c2}$) in the presence of an applied transport current. The imaginary part of the relaxation time and the normal state Hall effect both break ``particle-hole symmetry,’’ and produce a component of the vortex velocity parallel to the transport current, and consequently a Hall field due to the vortex motion. Various models for the relaxation time are considered, allowing for a comparison to some phenomenological models of vortex motion in superconductors, such as the Bardeen-Stephen and Nozières-Vinen models, as well as to models of vortex motion in neutral superfluids. In addition, the transport energy, Nernst effect, and thermopower are calculated for a single vortex. Vortex bending and fluctuations can also be included within this description, resulting in a Langevin equation description of the vortex motion. The Langevin equation is used to discuss the propagation of helicon waves and the diffusional motion of a vortex line. The results are discussed in light of the rather puzzling sign change of the Hall effect which has been observed in the mixed state of the high temperature superconductors.
Source arXiv, cond-mat/9207018
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica