Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3662
Articles: 2'599'751
Articles rated: 2609

11 December 2024
 
  » arxiv » cond-mat/9710202

 Article overview



Path Integral Approach to the Scattering Theory of Quantum Transport
D. Endesfelder ;
Date 20 Oct 1997
Subject Mesoscopic Systems and Quantum Hall Effect | cond-mat.mes-hall
AbstractThe scattering theory of quantum transport relates transport properties of disordered mesoscopic conductors to their transfer matrix $box{T}$. We introduce a novel approach to the statistics of transport quantities which expresses the probability distribution of $box{T}$ as a path integral. The path integal is derived for a model of conductors with broken time reversal invariance in arbitrary dimensions. It is applied to the Dorokhov-Mello-Pereyra-Kumar (DMPK) equation which describes quasi-one-dimensional wires. We use the equivalent channel model whose probability distribution for the eigenvalues of $box{TT}^{dagger}$ is equivalent to the DMPK equation independent of the values of the forward scattering mean free paths. We find that infinitely strong forward scattering corresponds to diffusion on the coset space of the transfer matrix group. It is shown that the saddle point of the path integral corresponds to ballistic conductors with large conductances. We solve the saddle point equation and recover random matrix theory from the saddle point approximation to the path integral.
Source arXiv, cond-mat/9710202
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica