Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3662
Articles: 2'599'751
Articles rated: 2609

11 December 2024
 
  » arxiv » cond-mat/9710252

 Article overview



Alternating Kinetics of Annihilating Random Walks Near a Free Interface
L. Frachebourg ; P. L. Krapivsky ; S. Redner ;
Date 23 Oct 1997
Journal J. Phys. A 31, 2791-2799 (1998)
Subject Statistical Mechanics | cond-mat.stat-mech
Affiliation ENS, Paris, Boston University
AbstractThe kinetics of annihilating random walks in one dimension, with the half-line x>0 initially filled, is investigated. The survival probability of the nth particle from the interface exhibits power-law decay, S_n(t)~t^{-alpha_n}, with alpha_n approximately equal to 0.225 for n=1 and all odd values of n; for all n even, a faster decay with alpha_n approximately equal to 0.865 is observed. From consideration of the eventual survival probability in a finite cluster of particles, the rigorous bound alpha_1<1/4 is derived, while a heuristic argument gives alpha_1 approximately equal to 3 sqrt{3}/8 = 0.2067.... Numerically, this latter value appears to be a stringent lower bound for alpha_1. The average position of the first particle moves to the right approximately as 1.7 t^{1/2}, with a relatively sharp and asymmetric probability distribution.
Source arXiv, cond-mat/9710252
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica