| | |
| | |
Stat |
Members: 3662 Articles: 2'599'751 Articles rated: 2609
14 December 2024 |
|
| | | |
|
Article overview
| |
|
Quantum Geometry and Black Hole Entropy | A. Ashtekar
; J. Baez
; A. Corichi
; K. Krasnov
; | Date: |
1 Oct 1997 | Journal: | Phys.Rev.Lett. 80 (1998) 904-907 | Subject: | gr-qc hep-th | Abstract: | A `black hole sector’ of non-perturbative canonical quantum gravity is introduced. The quantum black hole degrees of freedom are shown to be described by a Chern-Simons field theory on the horizon. It is shown that the entropy of a large non-rotating black hole is proportional to its horizon area. The constant of proportionality depends upon the Immirzi parameter, which fixes the spectrum of the area operator in loop quantum gravity; an appropriate choice of this parameter gives the Bekenstein-Hawking formula S = A/4*l_p^2. With the same choice of the Immirzi parameter, this result also holds for black holes carrying electric or dilatonic charge, which are not necessarily near extremal. | Source: | arXiv, gr-qc/9710007 | Services: | Forum | Review | PDF | Favorites |
|
|
No review found.
Did you like this article?
Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.
|
| |
|
|
|