Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3662
Articles: 2'599'751
Articles rated: 2609

12 December 2024
 
  » arxiv » gr-qc/9710023

 Article overview



Numerical study on the hydrodynamic instability of binary stars in the first post Newtonian approximation of general relativity
Masaru Shibata ; Ken-ichi Oohara ; Takashi Nakamura ;
Date 3 Oct 1997
Journal Prog.Theor.Phys. 98 (1997) 1081-1098
Subject gr-qc
AffiliationOsaka University), Ken-ichi Oohara(Niigata University), and Takashi Nakamura(YITP
AbstractWe present numerical results on the hydrodynamic stability of coalescing binary stars in the first post Newtonian(1PN) approximation of general relativity. We pay particular attention to the hydrodynamical instability of corotating binary stars in equilibrium states assuming the stiff polytropic equation of state with the adiabatic constant $Gamma=3$. In previous 1PN numerical studies on corotating binary stars in equilibrium states, it was found that along the sequence of binary stars as a function of the orbital separation, they have the energy and/or angular momentum minima where the secular instability sets in, and that with increase of the 1PN correction, the orbital separation at these minima decreases while the angular velocity there increases. In this paper, to know the location of the innermost stable circular orbit(ISCO), we perform numerical simulations and find where the hydrodynamical instability along the corotating sequences of binary sets in. From the numerical results, we found that the dynamical stability limit seems to exist near the energy and/or angular momentum minima not only in the Newtonian, but also in the 1PN cases. This means that the 1PN effect of general relativity increases the angular frequency of gravitational waves at the ISCO.
Source arXiv, gr-qc/9710023
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica