Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3665
Articles: 2'599'751
Articles rated: 2609

17 January 2025
 
  » arxiv » hep-lat/9210037

 Article overview



The Shape of Inflated Vesicles
G. Gompper ; D.M. Kroll ;
Date 28 Oct 1992
Subject hep-lat cond-mat
AbstractThe conformation and scaling properties of self-avoiding fluid vesicles with zero extrinsic bending rigidity subject to an internal pressure increment $Delta p>0$ are studied using Monte Carlo methods and scaling arguments. With increasing pressure, there is a first-order transition from a collapsed branched polymer phase to an extended inflated phase. The scaling behavior of the radius of gyration, the asphericities, and several other quantities characterizing the average shape of a vesicle are studied in detail. In the inflated phase, continuously variable fractal shapes are found to be controlled by the scaling variable $x=Delta p N^{3 u/2}$ (or equivalently, $y = {}/ N^{3 u/2}$), where $N$ is the number of monomers in the vesicle and $V$ the enclosed volume. The scaling behavior in the inflated phase is described by a new exponent $ u=0.787pm 0.02$.
Source arXiv, hep-lat/9210037
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica