| | |
| | |
Stat |
Members: 3665 Articles: 2'599'751 Articles rated: 2609
19 January 2025 |
|
| | | |
|
Article overview
| |
|
Ward Identities for Affine-Virasoro Correlators | M.B. Halpern
; N.A. Obers
; | Date: |
22 Jul 1992 | Journal: | Int. J. Mod. Phys. A9 (1994) 265-312 | Subject: | hep-th | Abstract: | Generalizing the Knizhnik-Zamolodchikov equations, we derive a hierarchy of non-linear Ward identities for affine-Virasoro correlators. The hierarchy follows from null states of the Knizhnik-Zamolodchikov type and the assumption of factorization, whose consistency we verify at an abstract level. Solution of the equations requires concrete factorization ansätze, which may vary over affine-Virasoro space. As a first example, we solve the non-linear equations for the coset constructions, using a matrix factorization. The resulting coset correlators satisfy first-order linear partial differential equations whose solutions are the coset blocks defined by Douglas. | Source: | arXiv, hep-th/9207071 | Services: | Forum | Review | PDF | Favorites |
|
|
No review found.
Did you like this article?
Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.
|
| |
|
|
|