| | |
| | |
Stat |
Members: 3665 Articles: 2'599'751 Articles rated: 2609
17 January 2025 |
|
| | | |
|
Article overview
| |
|
From 2D conformal to 4D self-dual theories: quaternionic analyticity | V. Ogievetsky
; F. Gursey
; M. Evans
; | Date: |
27 Jul 1992 | Journal: | Phys.Rev. D47 (1993) 3496-3508 | Subject: | hep-th | Abstract: | It is shown that self-dual theories generalize to four dimensions both the conformal and analytic aspects of two-dimensional conformal field theories. In the harmonic space language there appear several ways to extend complex analyticity (natural in two dimensions) to quaternionic analyticity (natural in four dimensions). To be analytic, conformal transformations should be realized on $CP^3$, which appears as the coset of the complexified conformal group modulo its maximal parabolic subgroup. In this language one visualizes the twistor correspondence of Penrose and Ward and consistently formulates the analyticity of Fueter. | Source: | arXiv, hep-th/9207089 | Services: | Forum | Review | PDF | Favorites |
|
|
No review found.
Did you like this article?
Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.
|
| |
|
|
|