| | |
| | |
Stat |
Members: 3665 Articles: 2'599'751 Articles rated: 2609
25 January 2025 |
|
| | | |
|
Article overview
| |
|
N=3 Supersymmetric Extension of KdV Equation | S.Bellucci
; E.Ivanov
; S.Krivonos
; | Date: |
10 Oct 1992 | Subject: | hep-th | Abstract: | We construct a one-parameter family of N=3 supersymmetric extensions of the KdV equation as a Hamiltonian flow on N=3 superconformal algebra and argue that it is non-integrable for any choice of the parameter. Then we propose a modified N=3 super KdV equation which possesses the higher order conserved quantities and so is a candidate for an integrable system. Upon reduction to N=2, it yields the recently discussed ``would-be integrable’’ version of the N=2 super KdV equation. In the bosonic core it contains a coupled system of the KdV type equation and a three-component generalization of the mKdV equation. We give a Hamiltonian formulation of the new N=3 super KdV equation as a flow on some contraction of the direct sum of two N=3 superconformal algebras. | Source: | arXiv, hep-th/9210059 | Services: | Forum | Review | PDF | Favorites |
|
|
No review found.
Did you like this article?
Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.
|
| |
|
|
|