| | |
| | |
Stat |
Members: 3665 Articles: 2'599'751 Articles rated: 2609
25 January 2025 |
|
| | | |
|
Article overview
| |
|
Supersymmetry and the Nonlocal Yangian Deformation Symmetry | T. Curtright
; C. Zachos
; | Date: |
10 Oct 1992 | Journal: | Nucl.Phys. B402 (1993) 604-612 | Subject: | hep-th | Abstract: | In the quantized two-dimensional non-linear supersymmetric $sigma$-model, the supercurrent supermultiplet, which contains the energy-momentum tensor, is transformed by the nonlocal symmetry of the model into the isospin current supermultiplet. This effect incorporates supersymmetry into the known infinite-dimensional Yangian deformation symmetry of plain $sigma$-models, leads to precisely the same nontrivial extension of the two-dimensional super-Poincaré group as found previously for the Poincaré group, and thus determines the theory’s mass spectrum. A generalization to all higher-order nonlocal charges is conjectured such that their generating function, the so-called ``master charge’’, has a definite Lorentz spin which depends on the spectral parameter. | Source: | arXiv, hep-th/9210060 | Services: | Forum | Review | PDF | Favorites |
|
|
No review found.
Did you like this article?
Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.
|
| |
|
|
|