Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3661
Articles: 2'599'751
Articles rated: 2609

11 November 2024
 
  » arxiv » quant-ph/9605039

 Article overview



Quantum Information Theory of Entanglement and Measurement
Nicolas J. Cerf ; Chris Adami ;
Date 29 May 1996
Journal Physica D120 (1998) 62-81
Subject quant-ph
AffiliationCalifornia Institute of Technology
AbstractWe present a quantum information theory that allows for a consistent description of entanglement. It parallels classical (Shannon) information theory but is based entirely on density matrices (rather than probability distributions) for the description of quantum ensembles. We find that quantum conditional entropies can be negative for entangled systems, which leads to a violation of well-known bounds in Shannon information theory. Such a unified information-theoretic description of classical correlation and quantum entanglement clarifies the link between them: the latter can be viewed as ``super-correlation’’ which can induce classical correlation when considering a tripartite or larger system. Furthermore, negative entropy and the associated clarification of entanglement paves the way to a natural information-theoretic description of the measurement process. This model, while unitary and causal, implies the well-known probabilistic results of conventional quantum mechanics. It also results in a simple interpretation of the Kholevo theorem limiting the accessible information in a quantum measurement.
Source arXiv, quant-ph/9605039
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica