| | |
| | |
Stat |
Members: 3666 Articles: 2'599'751 Articles rated: 2609
05 February 2025 |
|
| | | |
|
Article overview
| |
|
Theoretical Uncertainties in the Subgiant--Mass Age Relation and the Absolute Age of Omega Cen | Brian Chaboyer
; Lawrence M. Krauss
; | Date: |
28 Dec 2001 | Subject: | astro-ph | Affiliation: | Dartmouth) and Lawrence M. Krauss (CWRU | Abstract: | The theoretical uncertainties in the calibration of the relationship between the subgiant mass and age in metal-poor stars are investigated using a Monte Carlo approach. Assuming that the mass and iron abundance of a subgiant star are known exactly, uncertainties in the input physics used to construct stellar evolution models and isochrones lead to a Gaussian 1-sigma uncertainty of +/-2.9% in the derived ages. The theoretical error budget is dominated by the uncertainties in the calculated opacities. Observations of detached double lined eclipsing binary OGLEGC-17 in the globular cluster Omega Cen have found that the primary is on the subgiant branch with a mass of M = 0.809+/-0.012 M_sun and [Fe/H]= -2.29+/-0.15 (Kaluzny et al. 2001). Combining the theoretical uncertainties with the observational errors leads to an age for OGLEGC-17 of 11.10+/-0.67 Gyr. The one-sided, 95% lower limit to the age of OGLEGC-17 is 10.06 Gyr, while the one-sided, 95% upper limit is 12.27 Gyr. | Source: | arXiv, astro-ph/0201443 | Services: | Forum | Review | PDF | Favorites |
|
|
No review found.
Did you like this article?
Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.
browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)
|
| |
|
|
|