Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'506'133
Articles rated: 2609

26 April 2024
 
  » arxiv » 0711.1083

 Article overview



The Faint and Extremely Red K-band Selected Galaxy Population in the DEEP2/Palomar Field
C.J. Conselice ; K. Bundy ; Vivian U ; P. Eisenhardt ; J. Lotz ; J. Newman ;
Date 7 Nov 2007
AbstractWe present in this paper an analysis of the faint and red near-infrared selected galaxy population found in near-infrared imaging from the Palomar Observatory Wide-Field Infrared Survey. This survey covers 1.53 deg^2 to 5-sigma detection limits of K_vega = 20.5-21 and J_vega = 22.5, and overlaps with the DEEP2 spectroscopic redshift survey. We discuss the details of this NIR survey, including our J and K band counts. We show that the K-band galaxy population has a redshift distribution that varies with K-magnitude, with most K < 17 galaxies at z < 1.5 and a significant fraction (38.3+/-0.3%) of K > 19 systems at z > 1.5. We further investigate the stellar masses and morphological properties of K-selected galaxies, particularly extremely red objects, as defined by (R-K) > 5.3 and (I-K) > 4. One of our conclusions is that the ERO selection is a good method for picking out galaxies at z > 1.2, and within our magnitude limits, the most massive galaxies at these redshifts. The ERO limit finds 75% of all M_* > 10^{11} M_0 galaxies at z ~ 1.5 down to K_vega = 19.7. We further find that the morphological break-down of K < 19.7 EROs is dominated by early-types (57+/-3%) and peculiars (34+/-3%). However, about a fourth of the early-types are distorted ellipticals, and within CAS parameter space these bridge the early-type and peculiar population, suggesting a morphological evolutionary sequence. We also investigate the use of a (I-K) > 4 selection to locate EROs, finding that it selects galaxies at slightly higher average redshifts (<z> = 1.43+/-0.32) than the (R-K) > 5.3 limit with <z> = 1.28+/-0.23. Finally, by using the redshift distribution of K < 20 selected galaxies, and the properties of our EROs, we are able to rule out all monolithic collapse models for the formation of massive galaxies.
Source arXiv, 0711.1083
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica