Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'506'133
Articles rated: 2609

26 April 2024
 
  » arxiv » astro-ph/0108397

 Article overview



Quasars, their host galaxies, and their central black holes
J.S. Dunlop ; R.J. McLure ; M.J. Kukula ; S.A. Baum ; C.P. O’Dea ; D.H. Hughes ;
Date 24 Aug 2001
Subject astro-ph
AffiliationUniversity of Edinburgh), R.J. McLure (University of Oxford), M.J. Kukula (University of Edinburgh), S.A. Baum (STScI), C.P. O’Dea (STScI), D.H. Hughes (INAOE, Mexico
AbstractWe present the final results from our deep HST imaging study of the hosts of radio-quiet quasars (RQQs), radio-loud quasars (RLQs) and radio galaxies (RGs). We describe new WFPC2 R-band observations for 14 objects and model these images in conjunction with the data already reported in McLure et al (1999). We find that spheroidal hosts become more prevalent with increasing nuclear luminosity such that, for nuclear luminosities M_V < -23.5, the hosts of both radio-loud and radio-quiet AGN are virtually all massive ellipticals. Moreover we demonstrate that the basic properties of these hosts are indistinguishable from those of quiescent, evolved, low-redshift ellipticals of comparable mass. This result kills any lingering notion that radio-loudness is determined by host-galaxy morphology, and also sets severe constraints on evolutionary schemes which attempt to link low-z ULIRGs with RQQs. Instead, we show that our results are as expected given the relationship between black-hole and spheroid mass established for nearby galaxies, and apply this relation to estimate the mass of the black hole in each object. The results agree very well with completely-independent estimates based on nuclear emission-line widths; all the quasars in our sample have M(bh) > 5 x 10^8 solar masses, while the radio-loud objects are confined to M(bh) > 10^9 solar masses. This apparent mass-threshold difference, which provides a natural explanation for why RQQs outnumber RLQs by a factor of 10, appears to reflect the existence of a minimum and maximum level of black-hole radio output which is a strong function of black-hole mass. Finally, we use our results to estimate the fraction of massive spheroids/black-holes which produce quasar-level activity. This fraction is ~0.1% at the present day, rising to > 10% at z = 2-3.
Source arXiv, astro-ph/0108397
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica