Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'506'133
Articles rated: 2609

27 April 2024
 
  » arxiv » 0811.1368

 Article overview



Non-holonomic Ideals in the Plane and Absolute Factoring
D.Grigoriev ; F.Schwarz ;
Date 9 Nov 2008
AbstractWe study {it non-holonomic} overideals of a left differential ideal $Jsubset F[partial_x, partial_y]$ in two variables where $F$ is a differentially closed field of characteristic zero. The main result states that a principal ideal $J=< P>$ generated by an operator $P$ with a separable {it symbol} $symb(P)$, which is a homogeneous polynomial in two variables, has a finite number of maximal non-holonomic overideals. This statement is extended to non-holonomic ideals $J$ with a separable symbol. As an application we show that in case of a second-order operator $P$ the ideal $<P>$ has an infinite number of maximal non-holonomic overideals iff $P$ is essentially ordinary. In case of a third-order operator $P$ we give few sufficient conditions on $<P>$ to have a finite number of maximal non-holonomic overideals.
Source arXiv, 0811.1368
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica