Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'506'133
Articles rated: 2609

27 April 2024
 
  » arxiv » 0904.0973

 Article overview



A statistical mechanical interpretation of algorithmic information theory III: Composite systems and fixed points
Kohtaro Tadaki ;
Date 6 Apr 2009
AbstractThe statistical mechanical interpretation of algorithmic information theory (AIT, for short) was introduced and developed by our former works [K. Tadaki, Local Proceedings of CiE 2008, pp.425-434, 2008] and [K. Tadaki, Proceedings of LFCS’09, Springer’s LNCS, vol.5407, pp.422-440, 2009], where we introduced the notion of thermodynamic quantities, such as partition function Z(T), free energy F(T), energy E(T), and statistical mechanical entropy S(T), into AIT. We then discovered that, in the interpretation, the temperature T equals to the partial randomness of the values of all these thermodynamic quantities, where the notion of partial randomness is a stronger representation of the compression rate by means of program-size complexity. Furthermore, we showed that this situation holds for the temperature itself as a thermodynamic quantity, namely, for each of all the thermodynamic quantities above, the computability of its value at temperature T gives a sufficient condition for T in (0,1) to be a fixed point on partial randomness. In this paper, we develop the statistical mechanical interpretation of AIT further and pursue its formal correspondence to normal statistical mechanics. The thermodynamic quantities in AIT are defined based on the halting set of an optimal computer, which is a universal decoding algorithm used to define the notion of program-size complexity. We show that there are infinitely many optimal computers which give completely different sufficient conditions in each of the thermodynamic quantities in AIT. We do this by introducing the notion of composition of computers to AIT, which corresponds to the notion of composition of systems in normal statistical mechanics.
Source arXiv, 0904.0973
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica