Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

26 April 2024
 
  » arxiv » 0904.3334

 Article overview



The Influence of Galaxy Formation Physics on Weak Lensing Tests of General Relativity
Andrew P. Hearin ; Andrew R. Zentner ;
Date 21 Apr 2009
AbstractForthcoming projects such as the DES, a JDEM, and LSST, aim to measure weak lensing shear correlations with unprecedented accuracy. Weak lensing observables are sensitive to both the distance-redshift relation and the growth of structure in the Universe. If the cause of accelerated cosmic expansion is dark energy within general relativity (GR), both cosmic distances and structure growth are governed by the properties of dark energy. Consequently, one may use lensing to check for this consistency and test GR. After reviewing the phenomenology of such tests, we address one major challenge to such a program. The evolution of the baryonic component of the Universe is highly uncertain and can influence lensing observables, manifesting as modified structure growth for a fixed cosmic distance scale. Using two proposed methods, we show that one could be led to reject the null hypothesis of GR when it is the true theory if this uncertainty in baryonic processes is neglected. Recent simulations suggest that we can correct for baryonic effects using a parametrized model in which the halo mass-concentration relation is modified. The correction renders biases small compared to statistical uncertainties. We study the ability of future weak lensing surveys to constrain the internal structures of halos and test the null hypothesis of GR simultaneously. Compared to nulling information from small-scales to mitigate sensitivity to baryonic physics, this internal calibration program should provide limits on deviations from GR that are several times more constraining. Specifically, we find that limits on general relativity in the case of internal calibration are degraded by only ~30% or less compared to the case of perfect knowledge of nonlinear structure.
Source arXiv, 0904.3334
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica