Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'506'133
Articles rated: 2609

26 April 2024
 
  » arxiv » 1002.2020

 Article overview



The JCMT Legacy Survey of the Gould Belt: a first look at Taurus with HARP
C.J. Davis ; A. Chrysostomou ; J. Hatchell ; J.G.A. Wouterloot ; J.V. Buckle ; D. Nutter ; M. Fich ; C. Brunt ; H. Butner ; B. Cavanagh ; E.I. Curtis ; A. Duarte-Cabral ; J. Di Francesco ; M. Etxaluze ; P. Friberg ; R. Friesen ; G.A. Fuller ; S. Graves ; J.S. Greaves ; M.R. Hogerheijde ; D. Johnstone ; B. Matthews ; H. Matthews ; J.M.C. Rawlings ; J.S. Richer ; J. Roberts ; S. Sadavoy ; R.J. Simpson ; N. Tothill ; Y. Tsamis ; S.Viti ; D. Ward-Thompson ; Glenn J. White ; J.Yates ;
Date 10 Feb 2010
AbstractAs part of a JCMT Legacy Survey of star formation in the Gould Belt, we present early science results for Taurus. CO J=3-2 maps have been secured along the north-west ridge and bowl, collectively known as L 1495, along with deep 13CO and C18O J=3-2 maps in two sub-regions. With these data we search for molecular outflows, and use the distribution of flows, HH objects and shocked H2 line emission features, together with the population of young stars, protostellar cores and starless condensations to map star formation across this extensive region. In total 21 outflows are identified. It is clear that the bowl is more evolved than the ridge, harbouring a greater population of T Tauri stars and a more diffuse, more turbulent ambient medium. By comparison, the ridge contains a much younger, less widely distributed population of protostars which, in turn, is associated with a greater number of molecular outflows. We estimate the ratio of the numbers of prestellar to protostellar cores in L 1495 to be ~ 1.3-2.3, and of gravitationally unbound starless cores to (gravitationally bound) prestellar cores to be ~ 1. If we take previous estimates of the protostellar lifetime of ~ 5 x 10^5 yrs, this indicates a prestellar lifetime of 9(+/-3) x 10^5 yrs. From the number of outflows we also crudely estimate the star formation efficiency in L 1495, finding it to be compatible with a canonical value of 10-15 %. We note that molecular outflow-driving sources have redder near-IR colours than their HH jet-driving counterparts. We also find that the smaller, denser cores are associated with the more massive outflows, as one might expect if mass build-up in the flow increases with the collapse and contraction of the protostellar envelope.
Source arXiv, 1002.2020
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica