Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'506'133
Articles rated: 2609

26 April 2024
 
  » arxiv » 1010.2485

 Article overview



Dense Molecular Gas Excitation in Nuclear Starbursts at High Redshift: HCN, HNC, and HCO+(J=6-5) Emission in the z=3.91 Quasar Host of APM08279+5255
Dominik A. Riechers ; Axel Weiss ; Fabian Walter ; Jeff Wagg ;
Date 12 Oct 2010
AbstractWe report the detection of surprisingly strong HCN, HNC, and HCO+(J=6-5) emission in the host galaxy of the z=3.91 quasar APM08279+5255 through observations with CARMA. HCN, HNC, and HCO+ are typically used as star formation indicators, tracing dense molecular hydrogen gas [n(H2) > 10^5,cm^-3] within star-forming molecular clouds. However, the strength of their respective line emission in the J=6-5 transitions in APM08279+5255 is extremely high, suggesting that they are excited by another mechanism besides collisions in the dense molecular gas phase alone. We derive J=6-5 line luminosities of L’(HCN)=(4.9+/-0.6), L’(HNC)=(2.4+/-0.7), and L’(HCO+)=(3.0+/-0.6)x10^10 (mu_L)^-1 K km/s pc^2 (where mu_L is the lensing magnification factor), corresponding to L’ ratios of ~0.23-0.46 relative to CO(J=1-0). Such high line ratios would be unusual even in the respective ground-state (J=1-0) transitions, and indicate exceptional, collisionally and radiatively driven excitation conditions in the dense, star-forming molecular gas in APM08279+5255. Through an expansion of our previous modeling of the HCN line excitation in this source, we show that the high rotational line fluxes are caused by substantial infrared pumping at moderate opacities in a ~220K warm gas and dust component. This implies that standard M_dense/L’ conversion factors would substantially overpredict the dense molecular gas mass M_dense. We also find a HCN J=6-5/5-4 L’ ratio greater than 1 (1.36+/-0.31) - however, our models show that the excitation is likely not ’super-thermal’, but that the high line ratio is due to a rising optical depth between both transitions. These findings are consistent with the picture that the bulk of the gas and dust in this source is situated in a compact, nuclear starburst, where both the highly active galactic nucleus and star formation contribute to the heating.
Source arXiv, 1010.2485
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica