Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

26 April 2024
 
  » arxiv » 1012.3739

 Article overview



Analysis of the 3d massive renormalization group perturbative expansions: a delicate case
B. Delamotte ; M. Dudka ; Yu. Holovatch ; D. Mouhanna ;
Date 16 Dec 2010
AbstractThe effectiveness of the perturbative renormalization group approach at fixed space dimension d in the theory of critical phenomena is analyzed. Three models are considered: the O(N) model, the cubic model and the antiferromagnetic model defined on the stacked triangular lattice. We consider all models at fixed d=3 and analyze the resummation procedures currently used to compute the critical exponents. We first show that, for the O(N) model, the resummation does not eliminate all non-physical (spurious) fixed points (FPs). Then the dependence of spurious as well as of the Wilson-Fisher FPs on the resummation parameters is carefully studied. The critical exponents at the Wilson-Fisher FP show a weak dependence on the resummation parameters. On the contrary, the exponents at the spurious FP as well as its very existence are strongly dependent on these parameters. For the cubic model, a new stable FP is found and its properties depend also strongly on the resummation parameters. It appears to be spurious, as expected. As for the frustrated models, there are two cases depending on the value of the number of spin components. When N is greater than a critical value Nc, the stable FP shows common characteristic with the Wilson-Fisher FP. On the contrary, for N<Nc, the results obtained at the stable FP are similar to those obtained at the spurious FPs of the O(N) and cubic models. We conclude from this analysis that the stable FP found for N<Nc in frustrated models is spurious. Since Nc>3, we conclude that the transitions for XY and Heisenberg frustrated magnets are of first order.
Source arXiv, 1012.3739
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica