Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'506'133
Articles rated: 2609

27 April 2024
 
  » arxiv » 1101.6014

 Article overview



Encapsulation and Electronic Control of Epitaxial Graphene by Photosensitive Polymers and UV light
Samuel Lara-Avila ; Kasper Moth-Poulsen ; Rositza Yakimova ; Thomas Bjørnholm ; Vladimir Fal'ko ; Alexander Tzalenchuk ; Sergey Kubatkin ;
Date 31 Jan 2011
AbstractElectronic devices using epitaxial graphene on Silicon Carbide require encapsulation to avoid uncontrolled doping by impurities deposited in ambient conditions. Additionally, interaction of the graphene monolayer with the substrate causes relatively high level of electron doping in this material, which is rather difficult to change by electrostatic gating alone.
Here we describe one solution to these problems, allowing both encapsulation and control of the carrier concentration in a wide range. We describe a novel heterostructure based on epitaxial graphene grown on silicon carbide combined with two polymers: a neutral spacer and a photoactive layer that provides potent electron acceptors under UV light exposure. Unexposed, the same double layer of polymers works well as capping material, improving the temporal stability and uniformity of the doping level of the sample. By UV exposure of this heterostructure we controlled electrical parameters of graphene in a non-invasive, non-volatile, and reversible way, changing the carrier concentration by a factor of 50. The electronic properties of the exposed SiC/ graphene/polymer heterostructures remained stable over many days at room temperature, but heating the polymers above the glass transition reversed the effect of light.
The newly developed photochemical gating has already helped us to improve the robustness (large range of quantizing magnetic field, substantially higher opera- tion temperature and significantly enhanced signal-to-noise ratio due to significantly increased breakdown current) of a graphene resistance standard to such a level that it starts to compete favorably with mature semiconductor heterostructure standards. [2,3]
Source arXiv, 1101.6014
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica