Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'506'133
Articles rated: 2609

26 April 2024
 
  » arxiv » 1201.1850

 Article overview



On the physical structure of IRC+10216. Ground-based and Herschel observations of CO and CCH
E. De Beck ; R. Lombaert ; M. Agúndez ; F. Daniel ; L. Decin ; J. Cernicharo ; H. S. P. Müller ; M. Min ; P. Royer ; B. Vandenbussche ; A. de Koter ; L. B. F. M. Waters ; M. A. T. Groenewegen ; M. J. Barlow ; M. Guélin ; C. Kahane ; J. C. Pearson ; P. Encrenaz ; R. Szczerba ; M. R. Schmidt ;
Date 9 Jan 2012
AbstractThe C-rich AGB star IRC+10216 undergoes strong mass loss, and quasi-periodic density enhancements in the circumstellar matter have been reported. CO is ubiquitous in the CSE, while CCH emission comes from a spatially confined shell. With the IRAM 30m telescope and Herschel/HIFI, we recently detected unexpectedly strong emission from the CCH N=4-3, 6-5, 7-6, 8-7, and 9-8 transitions, challenging the available chemical and physical models. We aim to constrain the physical properties of IRC+10216’s CSE, including the effect of episodic mass loss on the observed emission. In particular, we aim to determine the excitation region and conditions of CCH and to reconcile these with interferometric maps of the N=1-0 transition. Via radiative-transfer modelling, we provide a physical description of the CSE, constrained by the SED and a sample of 20 high-resolution and 29 low-resolution CO lines. We further present detailed radiative-transfer analysis of CCH. Assuming a distance of 150pc, the SED is modelled with a stellar luminosity of 11300Lsun and a dust-mass-loss rate of 4.0 imes10^{-8}Msun/yr. Based on the analysis of 20 high resolution CO observations, an average gas-mass-loss rate for the last 1000yrs of 1.5 imes10^{-5}Msun/yr is derived. This gives a gas-to-dust-mass ratio of 375, typical for an AGB star. The gas kinetic temperature throughout the CSE is described by 3 powerlaws: it goes as r^{-0.58} for r<9R*, as r^{-0.40} for 9<=r<=65R*, and as r^{-1.20} for r>65R*. This model successfully describes all 49 CO lines. We show the effect of wind-density enhancements on the CCH-abundance profile, and the good agreement of the model with the CCH N=1-0 transition and with the lines observed with the 30m telescope and HIFI. We report on the importance of radiative pumping to the vibrationally excited levels of CCH and the significant effect this has on the excitation of all levels of the CCH-molecule.
Source arXiv, 1201.1850
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica