Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'506'133
Articles rated: 2609

26 April 2024
 
  » arxiv » astro-ph/0301254

 Article overview



The origin of crystalline silicates in the Herbig Be star HD100546 and in comet Hale-Bopp
J. Bouwman ; A. de Koter ; C. Dominik ; L.B.F.M Waters ;
Date 14 Dec 2002
Journal Astron.Astrophys. 401 (2003) 577-592
Subject astro-ph
Affiliation1 and 2), A. de Koter , C. Dominik , L.B.F.M Waters (1 and 3) ( Astronomical Institute "Anton Pannekoek", University of Amsterdam, The Netherlands, CEA/DSM/DAPNIA, Service d’Astrophysique, France, Instituut voor Sterrenkunde, K.U. Leu
AbstractWe have investigated the spatial distribution, and the properties and chemical composition of the dust orbiting HD 100546. This system is remarkably different from other isolated Herbig Ae/Be stars in both the strength of the mid-IR excess and the composition of the circumstellar dust. We speculate that the formation and spatial distribution of the crystalline dust observed in the HD 100546 system may be linked to the formation of a proto-Jupiter in the disk around HD 100546. Such a proto-Jupiter could gravitationally stir the disk leading to a collisional cascade of asteroidal sized objects producing small crystalline grains, or it could cause shocks by tidal interaction with the disk which might produce crystalline dust grains through flash heating. As shown by Malfait et al. (1998), the infrared spectrum of HD 100546 is very similar to that of C/1995 O1 Hale-Bopp (Crovisier et al. 1997). Using an identical methodology, we have therefore also studied this solar system comet. Both objects have an almost identical grain composition, but with the important difference that the individual dust species in Hale-Bopp are in thermal contact with each other, while this is not the case in HD 100546. This suggests that if similar processes leading to the dust composition as seen in HD 100546 also occurred in our own solar system, that Hale-Bopp formed after the formation of one or more proto-gas giants.
Source arXiv, astro-ph/0301254
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica