Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'506'133
Articles rated: 2609

26 April 2024
 
  » arxiv » astro-ph/0302141

 Article overview



On the structure of the burst and afterglow of Gamma-Ray Bursts I: the radial approximation
R. Ruffini ; C.L. Bianco ; P. Chardonnet ; F. Fraschetti ; S.-S. Xue ;
Date 7 Feb 2003
Journal Int.J.Mod.Phys. D12 (2003) 173-270
Subject astro-ph
AbstractWe have proposed three paradigms for the theoretical interpretation of gamma-ray bursts (GRBs). (1) The relative space-time transformation (RSTT) paradigm emphasizes how the knowledge of the entire world-line of the source from the moment of gravitational collapse is a necessary condition to interpret GRB data. (2) The interpretation of the burst structure (IBS) paradigm differentiates in all GRBs between an injector phase and a beam-target phase. (3) The GRB-supernova time sequence (GSTS) paradigm introduces the concept of induced supernova explosion in the supernovae-GRB association. These three paradigms are illustrated using our theory based on the vacuum polarization process occurring around an electromagnetic black hole (EMBH theory) and using GRB 991216 as a prototype. We illustrate the five fundamental eras of the EMBH theory: the self acceleration of the $e^+e^-$ pair-electromagnetic plasma (PEM pulse), its interaction with the baryonic remnant of the progenitor star (PEMB pulse). We then study the approach of the PEMB pulse to transparency, the emission of the proper GRB (P-GRB) and its relation to the ``short GRBs’’. Finally the three different regimes of the afterglow are described within the fully radiative and radial approximations. The best fit of the theory leads to an unequivocal identification of the ``long GRBs’’ as extended emission occurring at the afterglow peak (E-APE). The relative intensities, the time separation and the hardness ratio of the P-GRB and the E-APE are used as distinctive observational test of the EMBH theory and the excellent agreement between our theoretical predictions and the observations are documented. The afterglow power-law indexes in the EMBH theory are compared and contrasted with the ones in the literature, and no beaming process is found for GRB 991216.
Source arXiv, astro-ph/0302141
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica