Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'506'133
Articles rated: 2609

26 April 2024
 
  » arxiv » astro-ph/0304377

 Article overview



SDSS J092455.87+021924.9: an Interesting Gravitationally Lensed Quasar from the Sloan Digital Sky Survey
Naohisa Inada ; Robert H. Becker ; Scott Burles ; Francisco J. Castander ; Daniel Eisenstein ; Patrick B. Hall ; David E. Johnston ; Bartosz Pindor ; Gordon T. Richards ; Paul L. Schechter ; Maki Sekiguchi ; Richard L. White ; J. Brinkmann ; Joshua A. Frieman ; S.J. Kleinman ; Jurek Krzesi’nski ; Daniel C. Long ; Eric H. Neilsen ; Jr. ; Peter R. Newman ; Atsuko Nitta ; Donald P. Schneider ; S. Snedden ; Donald G. York ;
Date 22 Apr 2003
Journal Astron.J. 126 (2003) 666
Subject astro-ph
AbstractWe report the discovery of a new gravitationally lensed quasar from the Sloan Digital Sky Survey, SDSS J092455.87+021924.9 (SDSS J0924+0219). This object was selected from among known SDSS quasars by an algorithm that was designed to select another known SDSS lensed quasar (SDSS 1226-0006A,B). Five separate components, three of which are unresolved, are identified in photometric follow-up observations obtained with the Magellan Consortium’s 6.5m Walter Baade telescope at Las Campanas Observatory. Two of the unresolved components (designated A and B) are confirmed to be quasars with z=1.524; the velocity difference is less than 100 km sec^{-1} according to spectra taken with the W. M. Keck Observatory’s Keck II telescope on Mauna Kea. A third stellar component, designated C, has the colors of a quasar with redshift similar to components A and B. The maximum separation of the point sources is 1.78". The other two sources, designated G and D, are resolved. Component G appears to be the best candidate for the lensing galaxy. Although component D is near the expected position of the fourth lensed component in a four image lens system, its properties are not consistent with being the image of a quasar at z~1.5. Nevertheless, the identical redshifts of components A and B and the presence of component C strongly suggest that this object is a gravitational lens. Our observations support the idea that a foreground object reddens the fourth lensed component and that another unmodeled effect (such as micro- or milli-lensing) demagnificates it, but we cannot rule out the possibility that SDSS0924+0219 is an example of the relatively rare class of ``three component’’ lens systems.
Source arXiv, astro-ph/0304377
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica