Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

26 April 2024
 
  » arxiv » 1209.1962

 Article overview



Averaging and exact perturbations in LTB dust models
Roberto A. Sussman ;
Date 10 Sep 2012
AbstractWe introduce a scalar weighed average ("q-average") acting on concentric comoving domains in spherically symmetric Lemaitre-Tolman-Bondi (LTB) dust models. The resulting averaging formalism allows for an elegant coordinate independent dynamical study of the models, providing as well a valuable theoretical insight on the properties of scalar averaging in inhomogeneous spacetimes. The q-averages of those covariant scalars common to FLRW models (the "q-scalars") identically satisfy FLRW evolution laws and determine for every domain a unique FLRW background state. All curvature and kinematic proper tensors and their invariant contractions are expressible in terms of the q-scalars and their linear and quadratic local fluctuations, which convey the effects of inhomogeneity through the ratio of Weyl to Ricci curvature invariants and the magnitude of radial gradients. We define also non-local fluctuations associated with the intuitive notion of a "contrast" with respect to FLRW reference averaged values assigned to a whole domain or time slice. The q-averages of local and non-local quadratic fluctuations are directly and exactly related to statistical correlation moments of the density and Hubble expansion scalar. The evolution equations for the q-scalars and suitably defined perturbations completely determine the dynamics of the models without the back-reaction correlation terms of Buchert’s average. A rigorous formalism of exact spherical non-linear perturbations can be defined over a formal FLRW background state associated to the q-scalars, recovering the standard results of linear perturbation theory in the appropriate limit. We briefly explore the possible application of this formalism to open theoretical issues, such as the relation between the growth of inhomogeneity and a definition of gravitational entropy.
Source arXiv, 1209.1962
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica