Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'506'133
Articles rated: 2609

27 April 2024
 
  » arxiv » 1212.1331

 Article overview



Multiple CP Non-conserving Mechanisms of $etabeta$-Decay and Nuclei with Largely Different Nuclear Matrix Elements
A. Meroni ; S. T. Petcov ; F. Simkovic ;
Date 6 Dec 2012
AbstractWe investigate the possibility to discriminate between different pairs of CP non-conserving mechanisms inducing the neutrinoless double beta $etabeta$-decay by using data on $etabeta$-decay half-lives of nuclei with largely different nuclear matrix elements (NMEs). The mechanisms studied are: light Majorana neutrino exchange, heavy left-handed (LH) and heavy right-handed (RH) Majorana neutrino exchanges, lepton charge non-conserving couplings in SUSY theories with R-parity breaking giving rise to the "dominant gluino exchange" and the "squark-neutrino" mechanisms. The nuclei considered are $^{76}$Ge, $^{82}$Se, $^{100}$Mo, $^{130}$Te and $^{136}$Xe. Four sets of nuclear matrix elements (NMEs) of the decays of these five nuclei, derived within the Self-consistent Renormalized Quasiparticle Random Phase Approximation (SRQRPA), were employed in our analysis. While for each of the five single mechanisms discussed, the NMEs for $^{76}$Ge, $^{82}$Se, $^{100}$Mo and $^{130}$Te differ relatively little, the relative difference between the NMEs of any two nuclei not exceeding 10%, the NMEs for $^{136}Xe$ differ significantly from those of $^{76}$Ge, $^{82}Se$, $^{100}$Mo and $^{130}$Te, being by a factor $sim (1.3 - 2.5)$ smaller. This allows, in principle, to draw conclusions about the pair of non-interfering (interfering) mechanisms possibly inducing the $etabeta$-decay from data on the half-lives of $^{136}Xe$ and of at least one (two) more isotope(s) which can be, e.g., any of the four, $^{76}Ge$, $^{82}Se$, $^{100}Mo$ and $^{130}Te$. The implications of the EXO lower bound on the half-life of $^{136}Xe$ for the problem studied are also exploited.
Source arXiv, 1212.1331
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica