Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'506'133
Articles rated: 2609

26 April 2024
 
  » arxiv » astro-ph/0310655

 Article overview



New high-resolution radio observations of the SNR CTB 80
G. Castelleti ; G. Dubner ; K. Golap ; W. M. Goss ; P. F. Velazquez ; M. Holdaway ; A. P. Rao ;
Date 22 Oct 2003
Subject astro-ph
AffiliationIAFE), G. Dubner (IAFE), K. Golap (NRAO), W. M. Goss (NRAO), P. F. Velazquez (UNAM), M. Holdaway (NRAO), A. P. Rao (NCRA
AbstractWe report new high resolution and high sensitivity radio observations of the extended supernova remnant (SNR) CTB 80 (G69.0+2.7) at 240 MHz, 324 MHz, 618 MHz, and 1380 MHz. The imaging of CTB 80 at 240 MHz and 618 MHz was performed using the Giant Metrewave Radio Telescope (GMRT) in India. The observations at 324 MHz and 1380 MHz were obtained using the Very Large Array (VLA, NRAO) in its C and D configurations. The new radio images reveal faint extensions for the asymmetric arms of CTB 80. The arms are irregular with filaments and clumps of size 1’ (or 0.6 pc at a distance of 2 kpc). The radio image at 1380 MHz is compared with IR and optical emission. The correspondence IR/radio is excellent along the N arm of CTB 80. Ionized gas observed in the [SII] line perfectly matches the W and N edges of CTB 80. The central nebula associated with the pulsar PSR B1951+32 was investigated with an angular resolution of 10" x 6". The new radio image obtained at 618 MHz shows with superb detail structures in the 8’ x 4’ E-W ``plateau’’ nebula that hosts the pulsar on its western extreme. A twisted filament, about 6’ in extent (~3.5 pc), trails behind the pulsar in an approximate W-E direction. In the bright ``core’’ nebula (size ~45"), located to the W of the plateau, the images show a distortion in the morphology towards the W; this feature corresponds to the direction in which the pulsar escapes from the SNR with a velocity of ~240 km/s. Based on the new observations, the energetics of the SNR and of the PWN are investigated.
Source arXiv, astro-ph/0310655
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica