Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'506'133
Articles rated: 2609

27 April 2024
 
  » arxiv » cond-mat/0301307

 Article overview



Nonextensive statistical mechanics and economics
Constantino Tsallis ; Celia Anteneodo ; Lisa Borland ; Roberto Osorio ;
Date 16 Dec 2002
Journal Physica A 324, 89 (2003).
Subject Statistical Mechanics; Computational Engineering, Finance, and Science | cond-mat.stat-mech cs.CE
AbstractErgodicity, this is to say, dynamics whose time averages coincide with ensemble averages, naturally leads to Boltzmann-Gibbs (BG) statistical mechanics, hence to standard thermodynamics. This formalism has been at the basis of an enormous success in describing, among others, the particular stationary state corresponding to thermal equilibrium. There are, however, vast classes of complex systems which accomodate quite badly, or even not at all, within the BG formalism. Such dynamical systems exhibit, in one way or another, nonergodic aspects. In order to be able to theoretically study at least some of these systems, a formalism was proposed 14 years ago, which is sometimes referred to as nonextensive statistical mechanics. We briefly introduce this formalism, its foundations and applications. Furthermore, we provide some bridging to important economical phenomena, such as option pricing, return and volume distributions observed in the financial markets, and the fascinating and ubiquitous concept of risk aversion. One may summarize the whole approach by saying that BG statistical mechanics is based on the entropy $S_{BG}=-k sum_i p_i ln p_i$, and typically provides {it exponential laws} for describing stationary states and basic time-dependent phenomena, while nonextensive statistical mechanics is instead based on the entropic form $S_q=k(1-sum_ip_i^q)/(q-1)$ (with $S_1=S_{BG}$), and typically provides, for the same type of description, (asymptotic) {it power laws}.
Source arXiv, cond-mat/0301307
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica