Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'506'133
Articles rated: 2609

26 April 2024
 
  » arxiv » cond-mat/0303577

 Article overview



Convex lattice polygons of fixed area with perimeter dependent weights
R. Rajesh ; Deepak Dhar ;
Date 27 Mar 2003
Journal Physical Review E, Vol 71, 016130 (2005)
Subject Statistical Mechanics | cond-mat.stat-mech
AbstractWe study fully convex polygons with a given area, and variable perimeter length on square and hexagonal lattices. We attach a weight t^m to a convex polygon of perimeter m and show that the sum of weights of all polygons with a fixed area s varies as s^{-theta_{conv}} exp[K s^(1/2)] for large s and t less than a critical threshold t_c, where K is a t-dependent constant, and theta_{conv} is a critical exponent which does not change with t. We find theta_{conv} is 1/4 for the square lattice, but -1/4 for the hexagonal lattice. The reason for this unexpected non-universality of theta_{conv} is traced to existence of sharp corners in the asymptotic shape of these polygons.
Source arXiv, cond-mat/0303577
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica