Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'506'133
Articles rated: 2609

26 April 2024
 
  » arxiv » 1309.1039

 Article overview



Imaging diagnostics for transitional discs
M. de Juan Ovelar ; M. Min ; C. Dominik ; C. Thalmann ; P. Pinilla ; M.Benisty ; T. Birnstiel ;
Date 3 Sep 2013
AbstractTransitional discs are a special type of protoplanetary discs where planet formation is thought to be taking place. These objects feature characteristic inner cavities and/or gaps of a few tens of AUs in the sub-millimitre images of the disc. This signature suggests a localised depletion of matter in the disc that could be caused by planet formation processes. However, recent observations have revealed differences in the structures imaged at different wavelengths in some of these discs. In this paper, we aim to explain these observational differences using self-consistent physical 2-D hydrodynamical and dust evolution models of such objects, assuming their morphology is indeed generated by the presence of a planet. We use these models to derive the distribution of gas and dust in a theoretical planet-hosting disc, for various planet masses and orbital separations. We then simulate observations of the emitted and scattered light from these models with VLT/SPHERE ZIMPOL, Subaru/HiCIAO, VLT/VISIR and ALMA. We do this by first computing the full resolution images of the models at different wavelengths, and then simulating the observations accounting for the characteristics of each particular instrument. The presence of the planet generates pressure bumps in the gas distribution of the disc whose characteristics strongly depend on the planet mass and position. These bumps cause large grains to accumulate while small grains are allowed into inner regions. This spatial differentiation of the grain sizes explains the differences in the observations since different wavelengths and observing techniques trace different parts of the dust size distribution. Based on this effect, we conclude that the combination of visible/near-infrared polarimetric and sub-mm images is the best strategy to constrain the properties of the unseen planet responsible for the disc structure.
Source arXiv, 1309.1039
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica