Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'506'133
Articles rated: 2609

27 April 2024
 
  » arxiv » 1310.8281

 Article overview



A Measurement of the Millimeter Emission and the Sunyaev-Zel'dovich Effect Associated with Low-Frequency Radio Sources
Megan B. Gralla ; Devin Crichton ; Tobias A. Marriage ; Wenli Mo ; Paula Aguirre ; Graeme E. Addison ; V. Asboth ; Nick Battaglia ; James Bock ; J. Richard Bond ; Mark J. Devlin ; Rolando Dunner ; Amir Hajian ; Mark Halpern ; Matt Hilton ; Adam D. Hincks ; Renee A. Hlozek ; Kevin M. Huffenberger ; John P. Hughes ; R. J. Ivison ; Arthur Kosowsky ; Yen-Ting Lin ; Danica Marsden ; Felipe Menanteau ; Kavilan Moodley ; Gustavo Morales ; Michael D. Niemack ; Seb Oliver ; Lyman A. Page ; Bruce Partridge ; Erik D. Reese ; Felipe Rojas ; Neelima Sehgal ; Jon Sievers ; Cristobal Sifon ; David N. Spergel ; Suzanne T. Staggs ; Eric R. Switzer ; Marco P. Viero ; Edward J. Wollack ; Michael B. Zemcov ;
Date 30 Oct 2013
AbstractWe present a statistical analysis of the millimeter-wavelength properties of 1.4 GHz-selected sources and a detection of the Sunyaev-Zel’dovich (SZ) effect associated with the halos that host them. The Atacama Cosmology Telescope (ACT) has conducted a survey at 148 GHz, 218 GHz and 277 GHz along the celestial equator. Using samples of radio sources selected at 1.4 GHz from FIRST and NVSS, we measure the stacked 148, 218 and 277 GHz flux densities for sources with 1.4 GHz flux densities ranging from 5 to 200 mJy. At these flux densities, the radio source population is dominated by active galactic nuclei (AGN), with both steep and flat spectrum populations, which have combined radio-to-millimeter spectral indices ranging from 0.5 to 0.95, reflecting the prevalence of steep spectrum sources at high flux densities and the presence of flat spectrum sources at lower flux densities. The thermal SZ effect associated with the halos that host the AGN is detected at the 5$sigma$ level through its spectral signature. When we compare the SZ effect with weak lensing measurements of radio galaxies, we find that the relation between the two is consistent with that measured by Planck for local bright galaxies. We present a detection of the SZ effect in some of the lowest mass halos (average $M_{200}approx10^{13}$M$_{odot}h_{70}^{-1}$) studied to date. This detection is particularly important in the context of galaxy evolution models, as it confirms that galaxies with radio AGN also typically support hot gaseous halos. With Herschel observations, we show that the SZ detection is not significantly contaminated by dust. We show that 5 mJy$<S_{1.4}<$200 mJy radio sources contribute $ell(ell+1)C_{ell}/(2pi)=0.37pm0.03mu$K$^2$ to the angular power spectrum at $ell=3000$ at 148 GHz, after accounting for the SZ effect associated with their host halos.
Source arXiv, 1310.8281
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica