Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'506'133
Articles rated: 2609

27 April 2024
 
  » arxiv » 1409.8458

 Article overview



Local Large-Scale Structure and the Assumption of Homogeneity
Ryan C. Keenan ; Amy J. Barger ; Lennox L. Cowie ;
Date 30 Sep 2014
AbstractOur recent estimates of galaxy counts and the luminosity density in the near-infrared (Keenan et al. 2010, 2012) indicated that the local universe may be under-dense on radial scales of several hundred megaparsecs (Mpc). Such a large-scale local under-density could introduce significant biases in the measurement and interpretation of cosmological observables, such as the inferred effects of dark energy on the rate of expansion. In Keenan et al. (2013), we measured the K-band luminosity density as a function of distance from us to test for such a local under-density. We made this measurement over the redshift range 0.01 < z < 0.2 (radial distances D ~ 50-800 Mpc). We found that the shape of the K-band luminosity function is relatively constant as a function of distance and environment. We derive a local (z < 0.07, D < 300 Mpc) K-band luminosity density that agrees well with previously published studies. At z > 0.07, we measure an increasing luminosity density that by z~ 0.1 rises to a value of ~1.5 times higher than that measured locally. This implies that the stellar mass density follows a similar trend. Assuming that the underlying dark matter distribution is traced by this luminous matter, this suggests that the local mass density may be lower than the global mass density of the universe at an amplitude and on a scale that is sufficient to introduce significant biases into the measurement of basic cosmological observables. At least one study has shown that an under-density of roughly this amplitude and scale could resolve the apparent tension between direct local measurements of the Hubble constant and those inferred by Planck team. Other theoretical studies have concluded that such an under-density could account for what looks like an accelerating expansion, even when no dark energy is present.
Source arXiv, 1409.8458
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica