Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'506'133
Articles rated: 2609

27 April 2024
 
  » arxiv » 1504.2737

 Article overview



Non-universal Voronoi cell shapes in amorphous ellipsoid packings
Fabian M. Schaller ; Sebastian C. Kapfer ; James E. Hilton ; Paul W. Cleary ; Klaus Mecke ; Cristiano De Michele ; Tanja Schilling ; Mohammad Saadatfar ; Matthias Schröter ; Gary W. Delaney ; Gerd E. Schröder-Turk ;
Date 10 Apr 2015
AbstractIn particulate systems with short-range interactions, such as granular matter or simple fluids, local structure plays a pivotal role in determining the macroscopic physical properties. Here, we analyse local structure metrics derived from the Voronoi diagram of configurations of oblate ellipsoids, for various aspect ratios $alpha$ and global volume fractions $phi_g$. We focus on jammed static configurations of frictional ellipsoids, obtained by tomographic imaging and by discrete element method simulations. In particular, we consider the local packing fraction $phi_l$, defined as the particle’s volume divided by its Voronoi cell volume. We find that the probability $P(phi_l)$ for a Voronoi cell to have a given local packing fraction shows the same scaling behaviour as function of $phi_g$ as observed for random sphere packs. Surprisingly, this scaling behaviour is further found to be independent of the particle aspect ratio. By contrast, the typical Voronoi cell shape, quantified by the Minkowski tensor anisotropy index $eta=eta_0^{2,0}$, points towards a significant difference between random packings of spheres and those of oblate ellipsoids. While the average cell shape $eta$ of all cells with a given value of $phi_l$ is very similar in dense and loose jammed sphere packings, the structure of dense and loose ellipsoid packings differs substantially such that this does not hold true. This non-universality has implications for our understanding of jamming of aspherical particles.
Source arXiv, 1504.2737
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica